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ABSTRACT

An axial-flow turbine off-design performance computer code used for preliminary studies

of gas turbine systems was modified and calibrated based on the experimental

performance of large aircraft-type turbines. The flow- and loss-model modifications and
calibrations are presented in this report. Comparisons are made between computed

performances and experimental data for seven turbines over wide ranges of speed and

pressure ratio. This report also serves as the users manual for the revised code, which is
named AXOD.



Modeling Improvements and Users Manual for
Axial-Flow Turbine Off-Design Computer Code AXOD

Arthur J. Glassman

University of Toledo
Toledo, Ohio 43606

SUMMARY

An axial-flow turbine off-design computer code used for preliminary studies of gas
turbine systems was modified and calibrated based on the experimental performance of
large aircraft-type turbines. The flow- and loss-model modifications and calibrations are
presented in this report. Comparisons are made between computed performances and
experimental data for seven turbines over wide ranges of speed and pressure ratio.

With regard to the flow model, the continuity calculation was modified to include a
flowpath slope derived from an axial-chord length correlation and a flow coefficient having
an input design value with a built-in reduction of 2 percent between low pressure ratio
across a blade row and choke. The loss model was improved by revising the blade-row
efficiency calculation methodology and calibrating the incidence-loss law. Blade-row
efficiency, previously maintained constant, was reduced at blade-row exit velocities beyond
choke, reaching a reduction of 2 percent at an exit Mach number of about 1.4. A
positive-incidence exponent of 3 and a negative-incidence exponent of 4, along with
optimum incidence angles of -4 degrees for low-pressure type turbines and -6 degrees for
high-pressure type turbines, yielded best results for the incidence cosine law.

Using the revised off-design performance model, computed flows and efficiencies were
compared with experimental values for seven aircraft-type turbines of varied design
characteristics and operating over wide ranges of speed and pressure ratio. The
experimental values were generally within 1 percent of the computed values and seldom
beyond 2 percent. Maximum discrepancies between computation and experiment were
reduced to about half of those from the original performance model.

This report also serves as a user's manual for the revised code, which is named AXOD.
Program input and output are described, and samples are included.

INTRODUCTION

Preliminary studies of gas turbine systems require many repetitive calculations of
geometry, design-point performance and, particularly for propulsion systems, off-design
performance for all the components. An analytical procedure and a computer program to



calculate the off-design performance of axial-flow turbines are described in reference 1.
Flow and loss models presented therein were used to compute performance over ranges of
speed and pressure ratio.

The performance model of reference 1 was based on axial flow (i.e., no radial
component of velocity) in annular sectors of constant span fraction distribution. A
subsequent modification provided a correction to account for flow entering and leaving
sectors within each blade row. Continuity was satisfied using the geometric flowpath radii
and blade angle input with no blockage correction. The loss model consisted of blade-row
inlet energy recoveries that were proportional to a constant recovery efficiency and an
incidence cosine law, blade-row kinetic energy efficiencies that were maintained constant,

and a stage test factor to account for other losses and discrepancies. A recent review of

this performance model resulted in concerns that the axial-flow assumption was not
adequate for turbines with high flowpath slopes, and that the loss model had not been
sufficiently tested and calibrated with experimental data. An investigation was, therefore,

performed to evaluate the referenced off-design performance model and to modify and
calibrate it as required.

This report presents the turbine off-design performance model modifications and
calibrations, and also serves as the user's manual for the revised code, which is named

AXOD. Experimental data for large aircraft-type turbines, both high-pressure and

low-pressure designs, provided the data base for improving the performance model. The
computed flows and efficiencies for seven turbines, three of which are from the NASA

Energy Efficient Engine program, are presented and compared with experimental values.
Program input and output are described and samples are included.

SYMBOLS

Aan

Cf

Cp

g
_h

i

J

k

N

P

pr
P

T

U

V

W

annulus area, ft 2

flow coefficient

heat capacity, Btu/(Ib)(°R)

gravitational constant, 32.17 (Ibm) (ft)/(I bf) (sec 2)

specific work, Btu/ib

incidence angle, deg

energy conversion constant, 778 (ft)(Ib)/Btu

correction coefficient

rotative speed, rpm

static pressure, psi

pressure ratio

total pressure, psi

total temperature, °R

blade speed, ft/sec

gas velocity, ft/sec

mass flow rate, Ib/sec
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q
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P
T

flowpath angle of inclination, deg

flow angle from axial direction, deg

specific heat ratio

ratio of inlet total pressure to standard pressure (14.696 psi)

specific heat ratio correction to mass flow rate

efficiency

squared ratio of critical velocity based on turbine inlet temperature to critical velocity

based on standard temperature (518.7°R)

density, Ib/ft 3

torque, (Ib)(ft)

Subscripts:

b

ex

f

hi

i

id

in

Io

opt

P

r

rec

ts

tt

U

X

1"1

blade row

blade-row exit

relating to flow coefficient

high end of correction range

sector index

ideal

blade-row inlet

low end of correction range

optimum

pitchline

root

recovered or recovery

based on inlet-total to exit-static pressure ratio

based on inlet-total to exit-total pressure ratio

tangential component

axial or meridional component

relating to efficiency

Superscript:

exp exponent in equation (5)

n incidence cosine law exponent

OFF-DESIGN PERFORMANCE MODEL

Presented in reference 1 is an analytical procedure for computing the off-design

performance of axial-flow turbines. This analytical procedure was based on axial flow (i.e.,
no radial component of velocity) in annular sectors of constant span fraction distribution.

This generally resulted in a shift in flow fraction distribution among the sectors within a
blade row, thus producing a possible error in energy and ideal-entropy conservation (see

ref. 1). To compensate for this, a subsequent modification was made that corrected the
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blade-row exit flow and state variables for each sector to values based on the same flow
fraction as had entered.

This section describes the flow and loss models used to compute off-design
performance. The reference model is presented first and then the recent modifications are
described.

Reference Model

The flow and loss models defining the analytical procedure of reference 1 are presented
in this section. All velocities and flow angles are relative to the particular blade row (i.e.,
absolute values for stators and relative values for rotors).

Flow._.._._-Continuity was computed at each blade-row exit as

w = _, PiVx,iAan,i (1)

where

V x = V cos _ex ( 2 )

and

V2 = Vx2 + Vu2 ( 3 )

Since Vx must be the axial component of velocity to satisfy equation (1) and the
meridional component to satisfy equation (3), the meridional velocity had to be purely axial

(i.e., no radial component) to satisfy both. The angle _ex was the given exit angle for the
blade row.

Loss.- There were three types of losses considered for the off-design performance
model: a blade-row inlet loss, a blade-row loss, and a stage test loss. The blade-row inlet
loss accounts for area-constriction and incidence effects at the inlet to each blade row by

producing a reduction in blade-row inlet total pressure. The blade-row loss accounts for
frictional and secondary losses within the blade row by a reduction in exit velocity. The

stage test loss can be used to account for losses not directly accounted for by the velocity

diagrams.

Blade-row inlet loss was represented by a blade-row inlet kinetic-energy recovery

efficiency defined as

qrec = Vrec 2 / Vin 2 = qrec,opt cos n (i - iopt) (4)
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The recovered kinetic energy from equation (4) was used to compute a reduced total
pressure at the blade-row inlet. Values for optimum recovery efficiency, optimum incidence
angle, and cosine-law exponent must be provided by the user. Optimum recovery
efficiencies and optimum incidence angles can be specified for each sector of each blade
row. Different exponents can be specified for positive and negative incidence. An
exponent of 2 corresponds to a recovery of the kinetic-energy component parallel to the
optimum flow angle and, therefore, a loss of the component normal to the optimum flow
angle. A higher exponent results in a higher loss.

Blade-row loss was represented by a blade-row kinetic-energy efficiency defined as

Fib = Vex 2 / Vex,id 2 -- Vex 2 / 12 g J CpTin [1 - ( Pex J Pin,id )exp ] } (5)

where

exp= (y- 1 )/_, (6)

The blade-row exit velocities were computed using equation (5) and maintaining a constant

efficiency. Values for blade-row efficiencies, which must be provided by the user, can be
specified individually for each sector of each blade row. These values are usually selected
so that the calculated turbine efficiency matches a known efficiency at the design point.

The stage test loss was represented by a stage test factor defined as

TF = Actual output energy ! Vector diagram energy (7)

The stage test factor, which can be specified for each sector of each stage, is used to
reflect losses that do not show up in the velocity diagrams. These can include clearance,

disk friction, and mechanical losses. The stage test factors must be provided by the user.

Reference 1 provided little guidance for selecting values for the various loss parameters.
The selected values had to yield a known design efficiency.

Model Modifications and Calibration

A review of the reference performance model resulted in concerns about several

aspects of the model. The assumption of purely axial flow for the continuity calculation was
questionable for high flowpath slopes such as were found in the low-pressure turbines of

high bypass engines. Also, the performance model had not been adequately tested.
Testing of the model against the experimental results of refs. 3-9 resulted in some additions
to the reference model and recommendation of values for some of the model coefficients

and exponents.
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Without very detailed measurements for a given turbine, there is no obvious way to
assign blade-row to blade-row and sector to sector variations for each of the loss
parameters, let alone to distribute the losses among the different parameters. Therefore,
the following assignments were made in order to reduce the parameters to a manageable
number.

1. The stage test factor and the optimum recovery efficiency were both assumed to have
values of 1 since the same effects on turbine efficiency are provided by the blade-row
efficiencies and the incidence-loss cosine law, respectively.

2. All values for any given parameter were assumed equal (i.e., no spanwise or
stagewise variations) in view of a lack of information concerning design details and local
flow behavior during preliminary studies.

3. The rotor loss (1 - 11b,ro)was assumed to be twice the stator loss (1 - rib,st) to reflect

the larger losses occurring in the rotor due to leakages and secondary flows due to rotation.

Flow.- Introducing a flow coefficient, cf, and treating the velocity component Vx as a

meridional velocity, the continuity equation is revised to

W = _ Cf, i Pi Vx,i Aan,i COS o. i (8)

where the flowpath slope angle c_ for each sector is determined by the sector mean radius

change across each blade row and an axial length from the axial chord correlation of
reference 2. The slope used for a calculation station is the average of the sector slopes for

the blade rows on either side of the station.

The improvement provided by the flowpath slope is demonstrated using the turbine of
reference 9, whose flowpath has the largest slope of any of the referenced turbines. This

5-stage turbine has a meanline slope of 17 degrees over the first 3 stages and a

corresponding tip slope of almost 25 degrees. With no flow coefficient correction, the
inclusion of the slope in the continuity equation reduced the discrepancy between the

computed and the experimental design flow rates from more than 5 percent to less than 1

percent.

The flow coefficient in equation (8) is composed of a user provided constant design

coefficient, Cf,d,multiplied by a function k_that reduces flow coefficient with increasing

blade-row pressure ratio.

cf = kf Cf,d ( 9 )

The design coefficient is usually selected so that the calculated mass flow rate matches the
known mass flow rate at design point. The correction kf is a linear function of blade-row

inlet-total to exit-static pressure ratio, pr,

kf = 1 + ( kf,lo - 1 ) ( pr- Prf,hi ) / ( pruo - Prf,hi ) (10)



Based on the experimental data, the values selected for the terms of equation (10) are
kuo=1.02, pruo=1.2,and Prf,hi equal to 95 percent of choking pressure ratio. The
flow-coefficient correction is maintained constant at pressure ratios less than pruo and

greater than prf,h_.

Loss.- "['he blade-row inlet loss model is unchanged from equation (4), but values for

optimum incidence angles and for positive and negative incidence exponents for the cosine
law have been determined using the data of refs. 3-9. No single combination of values is
best for all turbines, but the set of values selected herein provide a reasonable compromise
for the 7 turbines studied. Recommended exponent values are a positive-incidence

exponent of 3 and a negative-incidence exponent of 4.

It was observed that there seemed to be a small but definite difference in optimum

incidence angle attributable to the sharpness of the turbine blading leading edge. Cooled

high-pressure turbines have blunter leading edges than do uncooled low-pressure
turbines. The selected optimum incidence angles are -4 degrees for low-pressure type

turbines (having blades with sharper leading edges) and -6 degrees for high-pressure type

turbines (having blades with blunter leading edges). The AXOD code does not provide for
a direct input of optimum incidence angle; therefore, the optimum incidence effect is
modeled by adding the optimum incidence angle to the design-point inlet flow angle.

The experimental data from the high-work single-stage turbines (refs. 4 and 5) showed
the need for reductions in blade-row efficiency at pressure ratios beyond choke. A

parabolic function of blade-row inlet-total to exit-static pressure ratio was used to provide a

multiplier correction to blade-row efficiency.

kn = 1 - ( 1 - k,l,hi ) ( pr- pr,l,lo )2 / ( Pr,l,hi - Pr,l,lo )2 (11)

The values for the terms of equation (11) that best match the data are pr,l,to--2.5, prn,hi=3.5,

and kq,hi=0.98. This blade-row efficiency applies only to pressure ratios above Prn,loand
remains constant at pressure ratios above Pr,l,hi. The value of Prq,hi corresponds to a Mach
number of about 1.4.

Model Evaluation

The revised performance model was evaluated by comparing computed off-design

performance with experimental performance from seven aircraft-type turbines (refs. 3-9).
Presented in Table I are the design characteristics of these turbines, three of which (refs. 5,

6, and 9) are from the Energy Efficient Engine program. They cover a wide range of both
high-pressure and low-pressure turbine designs. These 20- to 30-inch tip diameter turbines

vary from 1 to 5 stages and represent a five-fold variation in stage corrected work (Ah/0), a
three-fold variation in stage work factor (gJAh/U2), and a five-fold variation in flow

coefficient (Vx/U). One was a two-stage cooled turbine with a cooling flow equal to 20

percent of the inlet flow. The experimental performance data were obtained in turbine
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component-test facilities.

Plotted in figures 1 - 7 over ranges of pressure ratio are the computed and experimental
flow rates and total efficiencies for the seven turbines. Three speed lines are shown for each

turbine except in figure 3, where the turbine was tested at only two speeds. The speeds

ranged from as low as 40 percent of design to as high as 120 percent of design with design
speed included. Pressure ratios usually ran up to choke and sometimes beyond. The two
single-stage high-work turbines were choked over all or most of the range of data.

For each turbine, the flow coefficients and the blade-row efficiencies were adjusted to

match the computed design-point values of flow rate and efficiency to the experimental values.

All off-design performance was then computed using the revised flow and loss models
described previously. The computations were performed using five equal-height annular
sectors in the flowpath. As seen from figures 1 - 7, the computed values of flow and efficiency

were generally within 1 percent of the experimental values and seldom beyond 2 percent.

Compared to the original performance model, the revised off-design performance model
reduces maximum discrepancies between computed and experimental efficiencies by a factor

of about 2.

A description of the input and output for the revised off-design performance computer code
AXOD is presented in the Appendix. Sample input and output are included for illustration.

SUMMARY OF RESULTS

An axial-flow turbine off-design computer code used for preliminary studies of gas turbine

systems was modified and calibrated based on the experimental performance of large
aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented
in this report. Comparisons are made between computed performances using the revised and
calibrated model and experimental data for seven turbines over wide ranges of speed and

pressure ratio.

The off-design performance modeling improvements made as a result of this investigation

are:

1. Revision of the continuity equation to include a flowpath slope determined by using an

axial-chord length correlation. The effectiveness of this change was illustrated for a turbine

having a meanline flowpath slope of 17 degrees. With this revision, the discrepancy between
calculated and measured design flow rates was reduced from more than 5 percent to less than

1 percent.

2. Addition of a variable flow coefficient composed of a user-defined base value and a linear

function of blade-row pressure ratio that reduces the flow coefficient by 2 percent going from

low pressure ratio to choke.

3. Reduction of blade-row efficiency at blade-row exit velocities beyond choke. A parabolic
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function of blade-row inlet-total to exit-static pressure ratio provides a maximum reduction
of 2 percent at an exit Mach number of 1.4.

4. Calibration of the incidence cosine law yielded a positive-incidence exponent of 3

and a negative-incidence exponent of 4. The optimum incidence angle was -4 degrees for

low-pressure type turbines, which have blades with sharper leading edges, and -6 degrees

for high-pressure type turbines, which have blades with blunter leading edges.

Computed flows and efficiencies were compared with experimental values for 7
aircraft-type high- and low-pressure turbines of varied design characteristics and operating
over wide ranges of speed and pressure ratio. The computed values were generally within

1 percent of the computed values and seldom beyond 2 percent. Maximum discrepancies
between computation and experiment were reduced to about half of those from the original

performance model.

This report also serves as the user's manual for the revised off-design performance
code AXOD. Program input and output are described and samples are included for

illustration.
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Appendix

DESCRIPTION OF INPUT AND OUTPUT

This appendix presents a detailed description of input and output for program AXOD.

Included to illustrate the input and output are sample inputs for a single-stage and a

multi-stage turbine and sample output for the single-stage turbine.

Input

The input for each case, which is read from unit 05, consists of two title lines and k
NAMELIST datasets where k is the number of turbine stages. A case is defined as one

speed line for a range of pressure ratios. An input file can include multiple cases. Each of
the two title lines, which are printed as page headings on the output, can contain up to 80

characters. One or both of these lines may be left blank, but they must appear as the first

two records for each case.

The NAMELIST name is DATAIN. The DATAIN variables, with units and default values,

are presented herein as overall input followed by stage input. Overall input is entered only

once for a case and need not be repeated for subsequent cases if unchanged. Stage input

is entered for each stage, unless otherwise indicated, of the first case but need not be

repeated for subsequent cases if unchanged.

Input blade angles must be specified from the axial direction with the following signs:

Stator exit and rotor inlet - positive in direction of blade speed.

Rotor exit and stator inlet - positive in direction opposite to blade speed.

Two sample inputs are illustrated. Table Ila presents the input for the single-stage

turbine whose performance is shown in figure 1. Table lib presents the input for the

two-stage cooled turbine whose performance is shown in figure 4. There are three cases in

each file, one for each speed line. The first case has two title lines; the other cases have

only one title line, thus requiring the inclusion of the shown blank lines. Note that very little

additional data is required for speed lines beyond the first one.

Overall Input:

TTI N Inlet total temperature (radially constant), °R. May be omitted if TTINH is input.

PTIN Inlet total pressure (radially constant), psi. May be omitted if PTINH is input.

TTINH(I) Inlet total temperature radial distribution, °R. Overrides TTIN.

I=1 ,SECT
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PTINH(I)
I--1,SECT

ALFOH(I)
I--1,SECT

WAIR

FAIR

PTPS

DELC

DELL

DELA

STG

SECT

EXPN

EXPP

RG

PAF

SLI

AACS

Inlet total pressure radial distribution, psi. Overrides PTIN.

Inlet flow angle radial distribution, deg. (default--SECT*0.0)

Inlet water/air ratio (default=0.0). May be omitted if RG and GAMG are input.

Inlet fuel/air ratio (default=0.0). May be omitted if RG and GAMG are input.

Starting value of first-stator meanline inlet-total to exit-static pressure ratio

(default--1.1 )

PTPS increment to initial blade-row choke (default=0.1)

PTPS increment from initial to last blade-row choke (default--0.1)

PTPS increment from last blade-row choke to exit-annulus choke (default=0.05)

A value of 0.0 terminates the speed line at last-stage rotor choke.

Number of stages, maximum=8.

Number of radial sectors, maximum=6. (default=1.0)

Negative-incidence exponent (default---4.0)

Positive-incidence exponent (default=3.0)

Gas constant, ft-lbf/(Ibm-°R). Omit for internal computation of RG and GAMG

for air.

Profile (temp & press) averaging switch for next stage inlet (default=0.0)

0.0 - Radially uniform

1.0 - Maintain existing radial profiles

2.0 - Maintain temperature and smooth pressure

Stage loss-value switch for SREC, SETA, SCF, RREC, RETA, RCF, & RTF

(default=1.0)

0.0 - Data to be input for all stages

1.0 - First-stage values used for all stages

Turbine-exit axial Mach number for termination of speed line (default=1.0)
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VCTD

PCNH(I)

I--1 ,SECT

WG

EPR

WTOL

RHOTOL

PRTOL

TRLOOP

TRDIAG

PFIND

DHFIND

Output switch (default--0.0)

-1.0 - Overall performance only

0.0 - Overall performance plus meanline values of key variables

1.0 - Overall performance plus all variable values for all radial sectors

Sector height distribution, fraction of annulus height (default=1.0)

(Not cumulative, sum of i values must equal 1.0)

Mass flow rate, Ib/sec. Used for design option only (default--0.0)

NOTE: A non-zero value triggers the design option.

Switch for high pressure-ratio correction to blade-row efficiency (default=1.0)

0.0 - Off

1.0 - On

Tolerance for mass-flow rate convergence (default--1 .e-5)

Tolerance for density convergence (default=l .e-4)

Tolerance for pressure ratio convergence (default=l .e-6)

Debug output switch for iteration control variables (default=0.0)

0.0 - Off

1.0 - On

Debug output switch for flow and state variables (default=0.0)

0.0- None

1.0 - Station 0 (stator inlet)

2.0 - Station 1 (stator exit)

3.0 - Station 1A (rotor inlet)

4.0 - Station 2 (rotor exit)

5.0 - Station 2A (stage exit)

6.0 - All stations - after each station calculation

7.0 - All stations - after overall performance calculation

Selected value of turbine total pressure ratio to be searched for. Omit if not

used.

Selected value of turbine specific work to be searched for. Omit if not used.
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IAR

ICYL

ICF

ENDPLT

Switch for axial-chord length (default=0)

0 - No slope used for continuity (i.e., axial flow)

1 - High aspect-ratio blading

2 - Mid aspect-ratio blading

3 - Low aspect-ratio blading

10 - 20 Fractional values between IAR=I and IAR=2

20 - 30 Fractional values between IAR--2 and IAR--3

Switch for blading angle definition (default=0)

0 - Input blade angles are on a flowpath surface with slope defined by IAR

1 - Input blade angles are on a cylindrical surface

Switch for flow coefficient variation (default=0)

0 - Flow coefficient varies with blade-row pressure ratio

1 - Flow coefficient constant

Switch for writing a map file in NEPP (ref. 10) format (default=0.0)

0.0- No

1.0 - Yes

ENDJOB

Stage Input:

STAGE

RPM

GAMG(J)

J=1,5

DR(J)

J=1,5

DT(J)

J=1,5

Switch for last case (default=0.0)

0.0 - More cases to follow

1.0 - Last case

The J subscripts refer to the 5 stage calculation stations, which are stator

inlet, stator exit, rotor inlet, rotor exit, and stage exit/next stator inlet.

The I subscripts refer to the radius centers of the SECT annular sectors.

Stage number (not number of stages)

Stage rotative speed, rev/min. Will remain constant for subsequent stages until

changed

Specific heat ratio. Omit if RG is omitted as it is internally computed (for air)

Hub diameter, inches

Tip diameter, inches
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RWG(J)
J--1,5

TWG(J)
J=1,5

PWG(J)
J--1,5

SDIA(I)
I--1,SECT

SDEA(I)
I--1,SECT

SPA(I)
I=1,SECT

SESTH

RDIA(1)
I=I ,SECT

RDEA(I)

I=1 ,SECT

RPA(I)

I=1 ,SECT

RERTH

SREC(I)

I=1 ,SECT

SETA(I)

I=1 ,SECT

SCF(I)

I=1 ,SECT

Ratio of station mass-flow rate to turbine inlet mass-flow rate. For the first

stage, RWG(1) must equal 1.0. For subsequent stages, RWG(1) must equal

RWG(5) of the previous stage.

Temperature of the coolant specified by RWG, °R. Input only for stations

where coolant is added.

Pressure of the coolant specified by RWG, psi. Input only for stations where

where coolant is added.

Stator vane inlet angle, deg. Add optimum incidence angle to design angle.

Omit for design option.

Stator vane exit angle, deg. Omit if SPA option is used or for design option.

Stator throat area per unit height, sq in./in. Omit if SDEA option is used.

Ratio of blade height at stator exit to blade height at stator throat. Omit if SDEA

option is used.

Rotor blade inlet angle, deg. Add optimum incidence angle to design angle.

Omit for design option.

Rotor blade exit angle, deg. Omit if RPA option is used or for design option.

Rotor throat area per unit height, sq in./in. Omit if RDEA option is used.

Ratio of blade height at rotor exit to blade height at rotor throat. Omit if RDEA

option is used.

Stator inlet recovery efficiency, decimal. Input only for first stage if SLI=1.0.

(default=S ECT*1.0)

Stator efficiency, decimal. Input only for first stage if SLI=I .0.

Stator flow coefficient, decimal.

(default=S ECT*1.0)

Input only for first stage if SLI=1.0.
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RREC(I)
I=1 SECT

RETA(I)
I--1,SECT

RCF(I)
I=1,SECT

RTF(I)
I=1 SECT

RVUI(I)
I--1,SECT

RVU2(I)
I--1,SECT

Rotor inlet recovery efficiency, decimal. Input only for first stage if SLI=I.0.

(default=SECT*1.0)

Rotorefficiency, decimal. Input only for first stage if SLI--1.0.

Rotor flow coefficient, decimal. Input only for first stage if SLI=1.0.

(default--SECT*1.0)

Rotor test factor, decimal. Input only for first stage if SLI=1.0.

(default--SECT*1.0)

Design stator-exit angular momemtum (radius * tangential velocity), in.-ft/sec.
Input for design option only.

Design rotor-exit angular momemtum (radius * tangential velocity), in.-ft/sec.

Input for design option only.

ENDSTG Switch for last stage (default=0.0)

0.0 - Not last stage

1.0 - Last stage

Output

Three levels of output are available as specified by the input variable VCTD. All levels

provide an input echo. The lowest level (VCTD---1.0) prints only the overall performance.

The next level (VCTD=0.0) adds stage meanline variables to the output. The highest level

(VCTD--1.0) adds the printout of all variables for all stations and all annular sectors.

Presented in table III is the sample output that corresponds to the sample input of table

Ila. This is the highest-level output, but presents computed results for only the first

pressure-ratio point on the first speed line. The full output for this case would have about

30 points on each speed line. Shown on the first page of table III is the input echo with the

variables all being defined in the Input section. The next page of this table presents the

stage and overall performance results that are printed for the mid-level output. Only the
overall performance is printed at the lowest level. The last two pages display the detailed

interstage performance printed for the highest level in addition to the overall and stage

performance. In addition to detailed output presented for the five annular sectors,

extrapolated values are printed for the hub and the tip.

The output variables shown in table III are defined in this section. The calculation
stations and radial locations are identified as follows:
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0 - Stator inlet

1 - Stator exit

1A - Rotor inlet

2 - Rotor exit

2A - Stage exit

P - Pitchline (i.e., meanline)

R- Root

RT- Root

TIP - Tip

The output variables are listed in the order of their first appearance.

TT

PT

WG

DEL H

WRT/P

DH/T

N/RT

ETA TT

ETA TS

ETA AT

PT0/PS1

PT0/PT2

PT0/PS2

PTR1 A/PS2

TT2/TT0

TTR1 p'T0

PS

TTR

PTR

uP/vl
UR/VI

W.F.

RX

ALPH(A)

I

BETA

DBETA

M

MR

Total temperature, °R

Total pressure, psi

Mass flow rate, Ib/sec

Specific work, Btu/Ib
Corrected mass flow rate at stage or turbine inlet (w/T/P), (Ib/sec)(°R)ll21psi

Corrected specific work (_ht_l), Btu/(Ib)(°R)

Corrected rotative speed N//T, rpm/°R 1/2

Total efficiency

Static efficiency

Rating efficiency
Stator inlet-total to exit-static pressure ratio

Stage or turbine inlet-total to exit-total pressure ratio

Stage or turbine inlet-total to exit-static pressure ratio

Rotor inlet-relative-total to exit static pressure ratio

Stage exit-total to inlet-total temperature ratio
Rotor-inlet-relative-total to stage-inlet-total temperature ratio

Static pressure, psi

Relative total temperature, °R

Relative total pressure, psi

Ratio of pitchline blade speed to stage isentropic velocity, Up//(2gJ_hts,id)

Ratio of root blade speed to stage isentropic velocity, Ur//(2gJ_hts,id)

Stage or turbine work factor, gJ,_hH/U2

Stage reaction, ratio of rotor-to-stage static enthalpy drops

Absolute flow angle, deg

Incidence angle, deg

Relative flow angle, deg

Rotor turning angle, deg

Absolute Mach number

Relative Mach number
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E/3"HCR
N/RTH CR
WRTHCRE/D
RPM
MF

PT/T EQ
PT/S EQ
PT/PAT2
ETATTR P
WNE/60D
HP
EQ WG0
TORQUE

TOR/P
EQTOR
UNIS
DIAM

SLOP(E)

V

VU

VZ

TS

DENS

DELA

ZWI INC

ETA S

FTA Nil N

F TAN

FAX/IN

F AX

F DRUM

R

RU

U

PSI

ETA R

Stage or turbine equivalent work, Z_hu/0,Btu/Ib

Stage or turbine equivalent speed, N/#e, rpm

Equivalent mass flow rate, w#0_/5, Ib/sec

Rotative speed, rev/min

Axial Mach number

Turbine equivalent inlet-total to exit-total pressure ratio

Turbine equivalent inlet-total to exit-static pressure ratio

Turbine inlet-total to exit-axial-total pressure ratio

Turbine total efficiency based on first-rotor inlet ideal enthalpy

Turbine equivalent flow-speed parameter, wN_/60b, (Ib)(rev)/sec 2

Turbine power output, horsepower

Equivalent mass flow rate, w/0_/8, Ib/sec

Turbine torque, Ib-ft
Turbine corrected torque, T/P, ft-in 2

Turbine equivalent torque, T_/8, Ib-ft

Ratio of mean blade speed to turbine isentropic velocity, Up/#(2gJAhts,_d)

Diameter, inches

Sector geometric flowpath slope

Absolute velocity, ft/sec

Absloute velocity tangential component, ft/sec

Absolute velocity meridional component, ft/sec

Static temperature, °R

Density, Ibflt 3

Stator turning angle, deg

Zweifel incompressible blade loading coefficient

Stator efficiency

Stator or rotor tangential blade loading per unit height, Ib/in

Stator or rotor total tangential blade loading, Ib

Stator or rotor axial blade loading per unit height, Ib/in

Stator or rotor total axial blade loading, Ib

Axial forces on stator or rotor endwall surfaces, Ib

Relative velocity, ft/sec

Relative velocity tangential component, ft/sec

Blade speed, ft/sec

Sector work coefficient, gJ_htt/2U 2

Rotor efficiency
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Number Total

of pressure

stages ratio

TABLE I

DESIGN CHARACTERISTICS OF TURBINES USED FOR

OFF-DESIGN PERFORMANCE MODEL EVALUATION

Maximum Stage Stage Average Hub Tip

corrected average average flow diameter diameter

tip corrected work coefficient in/out, in/out,

speed, work, factor inches inches

ft/sec Btu/Ib

1 1.8 577

1 3.4 705

1 4.2 837

2 5.0 690

3 3.5 393

3.5 2.3 290

5 4.4 437

17.0 1.7 0.67 22.0/22.0

33.0 1.9 0.64 17.0/17.0

37.8 1.6 0.35 20.4/20.3

21.9 1.3 0.46 24.9/24.5

11.0 3.0 1.41 17.8/17.8

7.5 4.0 1.75 15.8/13.0

7.9 2.6 1.02 17.2/19.2

30.0/30.0

20.0/20.0

24.0/24.1

29.4/30.0

22.1/28.4

23.4/26.2

21.6/31.2

Exit

radius

ratio

0.73

0.85

0.84

0.82

0.63

0.50

0.62

Reference

3

4

5

@

7

8

9

* Cooled - coolant flow is 20% of turbine inlet flow



TABLE Ila.--SAMPLE INPUT FOR SINGLE-STAGE TURBINE

NASA ONE-STAGE TURBINE - TN D-4389

i00 PERCENT SPEED

&DATAIN STAGE=I.,

TTIN=518°7,PTIN=I4.696,IAR=2,PTPS=I.25,DELC=.01,DELL=0.I,DELA=0.0,

STG=I.,SECT=5.,PCNH=5*0.2,VCTD=I.,RG=53.35,RPM=4407.4,

GAMG=5*I.4,RWG=5*I.0,EXPN=4.,EXPP=3.,DR=5*22.,DT=5*30.,

SDIA=5*-6.,SDEA=69.6,68.3,67.0,65.8,64.5,

SETA=5*.9628,SREC=5*I.0,SCF=5*.990, _ .
RDIA=45.5,38.0,30.4,21.5,11.5,RDEA=56.35,57.30,58.26,59.19,60.12-,

RETA=5*.9256,RTF=5*I.0,RREC=5*I.0,RCF=5*.990,

ENDPLT=I.0,ENDSTG=I. &END

70 PERCENT SPEED

&DATAIN PTPS=I.3,RPM=3085.2,VCTD =-I. ,

ENDSTG=I.0 &END

40 PERCENT SPEED

&DATAIN PTPS=I.4,RPM=I763.0,

ENDSTG=I.0,ENDJOB=I. &END

TABLE lib.--SAMPLE INPUT FOR MULTI-STAGE COOLED TURBINE

NASA/GE EEE HPT TWO-STAGE COOLED TURBINE

101.6 PERCENT SPEED

&DATAIN STAGE=I.,ENDJOB=0.,ENDPLT=I.,

TTIN=I283.,PTIN=50.0,EPR=I.,AACS=.55,

PTPS=I.535,DELC=.001,DELL=.I,DELA=0.1,

STG=2.,SECT=5.,PCNH=5*0.2,VCTD=-I.,

RPM=8416.4,SLI=I.0,IAR=20,ICYL=I,

EXPN=4.,EXPP=3.0,

DR=24.94,25.65,25.60,25.46,25.06,

DT=29.36,28.80,28.82,28.82,29.16,

SDIA=5*-6.,SETA=5*.9530,SREC=5*I.0,SDEA=73.32,73.76,74.2,74.68,75"I6,

RDIA=35.0,37.2,37.2,33.6,21.5,RETA=5*.9060,

RDEA=66.3,66.9,66.9,66.3,65.2,RTF=5*I.0,RREC =5.I'0,

RWG=I.0,1.0895,1.105,1.1759,1.1759,TWG=0.0,615.,620",622", 0"0'

PWG=0.0,50.5,38.6,50.3,0.0,SCF=5*.976,RCF=5 *.976,

ENDSTG=0. &END

&DATAIN STAGE=2.,ENDSTG=I.,

DR=25.06,24.58,24.50,24.50,24.50,

DT=29.16,29.96,30.00,30.00,30.00,

RWG=I.1759,4*I.2007,TWG=0.0,640.,3*0.0,PWG=0.0,23.7,3*0 .0,

SDIA=I0.3,14.3,15.8,12.0,6.I,SDEA=5*69.,

RDIA=23.2,17.8,11.0,0.7,-13.6,RDEA=5*59.8,

&END

76.2 PERCENT SPEED

&DATAIN STAGE=I.0,PTPS=I.590,RPM=6312.3,EN DSTG=0o0 &END

&DATAIN STAGE=2.,VCTD=-I.,ENDSTG=I. &END

59.3 PERCENT SPEED

&DATAIN STAGE=I.0,PTPS=I.62,RPM=4912.4,ENDSTG =0"0 &END

&DATAIN STAGE=2.,VCTD=-I.,ENDSTG=I.,ENDJOB =I. &END
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TABLE III.--SAMPLE OUTPUT

NASA
I00

_DATAIN
TTIN= 518.700
PTPS= 1.250
STG = 1.000

RG= 53.350
RPM= 4407.400

ENDSTG= 1.000
IAR = 2

TURBINE COMPUTER PROGRAM
ONE-STAGE TURBINE - TN D-_389

PERCENT SPEED

PTIN=
DELC=
SECT=
PAF=

VCTD=

I_.696 NAIR= .000 FAIR = .000
.010 DELL= .100 DELA = .000

5.000 EXPN= _.000 EXPP= 3.000
.000 SLI= 1.000 AACS= 1.000

1.000 EXPRE= .000 NG= .000
•O00DHFIND= IO000.O00PFIND = 1000.000

1.000
RADIAL PROFILES
.200 .200 .200 .000PCNH = .200

ENDJOB=
EPR=

INLET
.200

STAGE= I
STA. 0

GAMG= i._00
DR= 22.000
DT= 30.000

RHG= 1.000
TNG= .0
PNG= .00

SESTH= .000

STANDARD OPTION
AXIAL STATIONS

STA. i STA.1A STA. 2 STA. 2A
i._00 I._00 i._00 i._00

22.000 22.000 22.000 22.000
50.000 30.000 30.000 30.000

1.000 1.000 1.000 1.000
.0 .0 .0 .0

.00 .00 .00 .00
RERTH = .000 RPM = 4_07._

STATOR
SDIA = -6.000 -6.000
SDEA= 69.600 68.300
SREC= 1.000 1.000
SETA= .965 .963
SCF= .990 .990
SPA= .000 .000

RVUI= .0 .0

RDIA= _5.500
RDEA= 56.350
RREC = 1.000
RETA= .926
RCF= .990
RTF: 1.000
RPA= .000

RVU2 = .0

TURBINE LENGTH =

RADIAL DISTRIBUTIONS
-6.000 -6.000 -6.000
67.000 65.800 60.500
1.000 1.000 1.000
.963 .963 .965
.990 .990 .990
.000 .000 .000

.0 .0 .0

ROTOR RADIAL DISTRIBUTIONS
38.000 30._00 21.500 11.500
57.300 58.260 59.190 60.120
1.000 1.000 1.000 1.000
.926 ,926 .926 .926
.990 .990 .990 .990

1.000 1.000 1.000 1.000
.000 .000 .000 .000

.0 .0 .0 .0

3.51 INCHES

.000

.000

.000

.000
.0

.00

.000

.000

.000

.000

.000

.000
.0

.000

.000

.000

.000

.000

.000

.000
.0
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TABLE III.--Continued

NASA TURBINE COMPUTER PROGRAM
NASA ONE-STAGE TURBINE - TN D-4389
100 PERCENT SPEED

TT 0
PT 0
HG 0

DEL H
HRT/P

DH/T
N/RT

ETA TT
ETA TS
ErA AT

PTO/PS1
PTO/PT2
PTO/PS2

PTRIA/PS2
TT2/TTO

TTR1/TTO
PS 1

TTR 1
PTR 1
PS 2
TT 2
PT 2

UP/VI
UR/VI

H.F. P
H.F. R

RX P
RX R

ALPHA 0
I STATOR
BETA 1A
I ROTOR
ALPHA 2
DBETA R

M 1
H1 RT
MR 1A

MRIA RT
MR 2

MR2 TIP
E/TH CR

N/RTH CR
HRTHCRE/D

RPH
MF 2A

STAGE 1
518.7

14.696
35.341

9.622
54.769
.01855

193.519
.91332
.80057
.9O3O6
1.250
1.363
1.427
1.176

.92268

.95020
11.752

492.9
12.116
10.300

478.6
10.784

64452
54536
96361

1 34587
35936
15371
.000

6.000
14.244

-16.156
-16.164
96.254
.56226
.65392
.22667
.31222
.46802
.52611
9.622

4407.4
35.341
4407.4
.24622

CASE 1. 1
STAGE PERFORMANCE

STAGE 2 STAGE 3

H.F. P
HRT/P
PTO/PT2
ETA TT
PT/T EQ

.96361
54.76934

1.36282
.91332

1.36282

STAGE 4 STAGE 5 STAGE 6 STAGE 7 STAGE 8

OVERALL PERFORMANCE
H.F. R 1.34587 DEL H 9.62213 HNE/60D 2596.030
N/RT 193.519 DH/T .01855 N/RTN CR 4407.367
PTO/PS2 1.42686 PT/PAT2 1.36792 E/TH CR 9.62199
ETA TS .80057 ETA TTRP .91332 HP 481.008
PT/S EQ 1.42686 HG 0 35.3410 EQ HGO 35.34124

TORQUE
TOR/P
EQ TOR
U/VIS
PTO/PSI

573.185
39.00280

573.18512
.64452

1.25000



TABLE III.--Continued

TURBINE COMPUTER PROGRAM
NASA ONE-STAGE TURBINE - TN D-4589
100 PERCENT SPEED

CASE 1. 1
INTER-STAGE PERFORMANCE

STA 0 STATOR INLET STAGE I.
DIAM 0 22.000 22.908 24.659 26.294 27.832

SLOPE 0 .00 .00 .00 .00
NG 0 7.068 7.068 7.068 7.068
TT 0 518.7 518.7 518.7 518.7 518.7
PT 0 14.696 14.696 14.696 14.696 14.696

ALPHA 0 .000 .000 .000 .000 .000
I STA 0 6.000 6.000 6.000 6.000 6.000

V 0 207.230 207.230 207.230 207.230 207.230
VU 0 .000 .000 .000 .000 .000
VZ 0 207.230 207.230 207.230 207.230 207.230
TS 0 515.1 515.1 515.1 515.1 515.1
PS 0 14.345 14.345 14.345 14.345 14.345

DENS 0 .07516 .07516 .07516 .07516 .07516
M 0 .18626 .18626 .18626 .18626 .18626

29.290
.00

7.068
518.7

14.696
.000

6.000
207.230

.000
207,230

515.1
14.345
.07516
.18626

30.000

518.7
14.696

.000
6.000

207.230
.000

207.230
515.1

14.345
.07516
.18626

STA 1 STATOR EXIT
DIAM 1 22.000 22.800 24.400 26.000 27.600 29.200 30.000

SLOPE 1 .00 .00 .00 .00 .00
NG 1 5.926 6.501 7.077 7.627 8.210
TT 1 518.7 518.7 518.7 518.7 518.7 518.7 518.7

ALPHA 1 70.214 69.599 68.299 66.999 65.799 64.499 63.864
DEL A 70.214 69.599 68.299 66.999 65.799 64.499 63.864

V I 700.727 678.991 641.467 608.791 580.233 554.968 542.943
VU 1 659.358 636.401 596.004 560.390 529.238 500.902 487.427
VZ 1 237.204 236.690 237.192 237.884 237.861 238.929 239.169
TS 1 477.8 480.3 484.5 487.9 490.7 493.1 494.2
PS 1 10.904 11.105 11.456 11.752 12.002 12.216 12.312

DENS 1 .06159 .06240 .06383 .06502 .06602 .06687 .06725
M 1 .65392 .63199 .59452 .56226 .53434 .50984 .49823

ZHI INC .5953 .6107 .6654 .719q .7702 .8223 .8R68
ETA S .9628 .9628 .9628 .9628 .9428 .9628 .9628

STATOR FORCES
22.000 22.800
-151.8 -146.5

256.8 241.6

24.400 26.000 27.6"0 29.200 30.C00
-150.5 -154.1 -156._ -159.8 -155.5

F TAN -614.4
221.1 203.3 188.2 174.5 166.1
FAX 824.3

AVG DIA
FTAN/IN

FAX/IN

F DRUM .0 °0
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TABLE III.mConcluded

TURBINE COMPUTER PROGRAM
NASA ONE-STAGE TURBINE - TN D-4389
100 PERCENT SPEED

CASE 1. 1
INTER-STAGE PERFORMANCE

STA 1A ROTOR INLET
DIAM 1A 22.000 22.800
SLOP 1A .00

HG IA 5.926
TTR IA 487.2 488.3
PTR IA 11.653 11.747

BETA 1A 44.888 39.905
I ROTOR -5.353 -5.595

R 1A 334.803 308.547
RU 1A 236.278 197.936
MR 1A .31244 .28719

U 1A 423.080 438.464

STAGE 1
24.400 26.000

.00 .00
6.501 7.077
490.5 492.9

11.933 12.116
28.123 14.244
-9.877 -16.156

268.944 245.429
• 126.770 60.387

•24926 .22667
469.234 500.003

27.600
.00

7.627
495.4

12.304
-.370

-21.869
237.866

-1.535
.21905

530.773

29.200
.00

8.210
498.1

12.507
-14.241
-25.741
246.505
-60.641
.22646

561.542

30.000

499.6
12.626

-20.516
-26.937
255.366
-89.500

.23434
576.927

STA 2 ROTOR EXIT

DIAM 2 22.000 22.800 24.400 26.000 27.600 29.200 30.000
SLOPE 2 .00 .00 .00 .00 .00

HG 2 5.890 6.498 7.077 7.651 8.225
BETA 2 55.886 56.349 57.299 58.259 59.189 60.119 60.600
DBETA 100.774 96.254 85.422 72.503 58.819 45.878 40.084

R 2 450.717 448.944 474.740 498.547 521.859 545.677 535.821
RU 2 373.157 373.714 399.494 423.982 448.205 473.136 466.817
MR 2 .42345 .42177 .44589 .46802 .48963 .51164 .50238

U 2 423.080 438.464 469.234 500.003 530.773 561.542 576.927
RX .15622 .20533 .28979 .35936 .41732 .46622 .48781

DEL H 10.299 10.011 9.862 9.674 9.469 9.252 8.695
PSI .72024 .65188 .56073 .48440 .42075 .36729 .32701

ETA TT .95901 .93227 .92739 .91760 .90542 .89157 .83787
ETA TS .85465 .83082 .81942 .80478 .78857 .77143 .72496
ETA AT .95164 .92510 .91905 .90774 .89388 .87848 .82557

ZNI INC 1.5467 1.4361 1.2212 1.0353 .8764 .7380 .6688
ETA R .9256 .9256 .9256 .9256 .9256 .9256 .9256

AVG DIA
FTAN/IN

ROTOR FORCES
22.000 22.800
139.5 130.8

24.400 26.000 27.600 29.200 30.000
132.9 133.2 132.8 131.8 120.6
F TAN 528.6
84.2 112.0 138.5 164.5 175.9
FAX 443.1

FAX/IN 40.6 55.6

.0F DRUM .0

STA 2A STAGE
DIAM 2A 22.000

SLOP 2A
HG 2A
PT 2A 10.716
TT 2A 477.0

V 2A 257.666
VU 2A -49.923

ALPH 2A -11.172
MF 2A .23749
VZ 2A 252.783

"_ TS 2A 471.5
PS 2A 10.288

DENS 2A .05890
M 2A .24208

EXIT
22.800 24.400 26.000 27.600 29.200 30.000

,00 .00 .00 .00 .00
5.890 6.498 7.077 7.651 8.225

10.716 10.751 10.781 10.809 10.836 10.836
477.0 477.6 478.4 479.2 480.1 480.1

257.063 265.793 273.071 279.762 285.870 285.150
-64.750 -69.740 -76.021 -82.568 -88.407 -ii0.110
-14.589 -15.212 -16.164 -17.166 -18.014 -22.715
•23372 .24090 .24622 .25079 .25490 .24662

248.774 256.480 262.276 267.300 271.856 263.033
471.5 471.7 472.2 472.7 473.3 473.4

10.290 10.295 10.300 10.304 10.308 10.311
• 05891 .05891 .05888 .05883 .05878 .05879

.24150 .24964 .25635 .26248 .26804 .267_5
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Figure 4.--Comparison of computed and measured performance for two-stage turbine

of ref, 6.

SPD EXP

69.3 0

76.2 i-I

.... 101.6 0

29



29.0

27.0

FLOW

25.0

23.0

i
i

X .................
.......... L ......... L--r E....... _ ........... L ........... _ ..........._,, - ----_,; ........ :

:I i/ _>_" : : :
7 / / i ', :
/ /,, /I ..... :.

.... J_ ..... • ........... • ........... •.......................
/_,,,

//
i_

I /

I/
.... A.[ ................................................................

i
i
i

I I I I i

1.50 2.50 3.50 4.50

SPD EXP

__ 80.0 0

100.0 0

120.0 A

.960

.580

EFFICIENCY

.8OO

: i
i

L. ¢. ¢-

<SL........ =':"-a"'-,_ ................. ' .........._ _ °L .-"" : E_..o__.L .....

.... ..... L.._,_
F

I i
........ J.-L ........... I............ L........... _........... L...........

/

,
'I

l

l
.... ;t...... L ........... i............ i............ i............ i............

SPD EXP

__ _o.o 0
__ 100.0 0

.... 120.0 A

.720 I I I I I

1.so 2.50 3.50 4.50

Total-to-total pressure ratio

Figure 5.mComparison of computed and measured performance for three-stage turbine of
ref. 7.

3O



46.0

44.0

FLOW

42.0

40.0

: i

i
i

+ i

._..<_ ,-_--_.................
/i i

I I i ..... _,----_--

¢ ........._.......:_o-- ......•...........
/ l ./

/ 4_-'"

// ,i,'"

¢1 ii ,,""

'£ ,,
/: ,2, < <

-I-_........._...............................................
/ i /#

(9/I ,,/

1.60 2.00 2.40 2.80

SPD EXP

_o.o O

__ 100.0 0

.... 120.0 ,%

.960

.680

EFFICIENCY

..................................L t. L......................_ L...........

, A "_ ,t
.......... "1_...,,....,.._..... L........... _............ ,..---=_c _-7itc...........

i '<_-""-i,.. i i "r-_.

I

i i , , (_ i
............_...........L..........._...........L ...........L ...........

SPD EXP

70.0 0

100.0 0

.... 120.0 A

6oo'_ I.......... _............ t. ........... D....................... L...........

..... _-" ' -- 0 ': :I :: ::
I I , ,

! "-_i o i i i

.720 I I I I I

1,60 2.00 2.40 2.80

Total-to-total pressure ratio
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